Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62.144
Filtrar
1.
Vaccine ; 42(12): 2975-2982, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38570270

RESUMO

BACKGROUND: Pneumococcal carriage is the primary reservoir for transmissionand a prerequisite for invasive pneumococcal disease. Pneumococcal Conjugate Vaccine 13 (PCV13) showed a 62% efficacy in protection against experimental Streptococcus pneumoniae serotype 6B (Spn6B) carriage in a controlled human infection model (CHIM) of healthy Malawian adults. We, therefore, measured humoral responses to experimental challenge and PCV-13 vaccination and determined the association with protection against pneumococcal carriage. METHODS: We vaccinated 204 young, healthy Malawian adults with PCV13 or placebo and nasally inoculated them with Spn6B at least four weeks post-vaccination to establish carriage. We collected peripheral blood and nasal lining fluid at baseline, 4 weeks post-vaccination (7 days pre-inoculation), 2, 7, 14 and > 1 year post-inoculation. We measured the concentration of anti-serotype 6B Capsular Polysaccharide (CPS) Immunoglobulin G (IgG) and IgA antibodies in serum and nasal lining fluid using the World Health Organization (WHO) standardised enzyme-linked immunosorbent assay (ELISA). RESULTS: PCV13-vaccinated adults had higher serum IgG and nasal IgG/IgA anti-Spn6B CPS-specific binding antibodies than placebo recipients 4 to 6 weeks post-vaccination, which persisted for at least a year after vaccination. Nasal challenge with Spn6B did not significantly alter serum or nasal anti-CPS IgG binding antibody titers with or without experimental pneumococcal carriage. Pre-challenge titers of PCV13-induced serum IgG and nasal IgG/IgA anti-Spn6B CPS binding antibodies did not significantly differ between those that got experimentally colonised by Spn6B compared to those that did not. CONCLUSION: This study demonstrates that despite high PCV13 efficacy against experimental Spn6B carriage in young, healthy Malawian adults, robust vaccine-induced systemic and mucosal anti-Spn6B CPS binding antibodies did not directly relate to protection.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Adulto , Humanos , Lactente , Vacinas Conjugadas , Sorogrupo , Formação de Anticorpos , Imunoglobulina G , Imunoglobulina A/análise , Vacinas Pneumocócicas , Anticorpos Antibacterianos
2.
Front Cell Infect Microbiol ; 14: 1282183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567021

RESUMO

Obligate intracellular bacteria have remained those for which effective vaccines are unavailable, mostly because protection does not solely rely on an antibody response. Effective antibody-based vaccines, however, have been developed against extracellular bacteria pathogens or toxins. Additionally, obligate intracellular bacteria have evolved many mechanisms to subvert the immune response, making vaccine development complex. Much of what we know about protective immunity for these pathogens has been determined using infection-resolved cases and animal models that mimic disease. These studies have laid the groundwork for antigen discovery, which, combined with recent advances in vaccinology, should allow for the development of safe and efficacious vaccines. Successful vaccines against obligate intracellular bacteria should elicit potent T cell memory responses, in addition to humoral responses. Furthermore, they ought to be designed to specifically induce strong cytotoxic CD8+ T cell responses for protective immunity. This review will describe what we know about the potentially protective immune responses to this group of bacteria. Additionally, we will argue that the novel delivery platforms used during the Sars-CoV-2 pandemic should be excellent candidates to produce protective immunity once antigens are discovered. We will then look more specifically into the vaccine development for Rickettsiaceae, Coxiella burnetti, and Anaplasmataceae from infancy until today. We have not included Chlamydia trachomatis in this review because of the many vaccine related reviews that have been written in recent years.


Assuntos
Vacinas Bacterianas , Chlamydia trachomatis , Animais , Anticorpos , Linfócitos T CD8-Positivos , Formação de Anticorpos
3.
PLoS One ; 19(4): e0292566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564600

RESUMO

Post vaccine immunity following COVID-19 mRNA vaccination may be driven by extrinsic, or controllable and intrinsic, or inherent health factors. Thus, we investigated the effects of extrinsic and intrinsic on the peak antibody response following COVID-19 primary vaccination and on the trajectory of peak antibody magnitude and durability over time. Participants in a longitudinal cohort attended visits every 3 months for up to 2 years following enrollment. At baseline, participants provided information on their demographics, recreational behaviors, and comorbid health conditions which guided our model selection process. Blood samples were collected for serum processing and spike antibody testing at each visit. Cross-sectional and longitudinal models (linear-mixed effects models) were generated to assess the relationship between selected intrinsic and extrinsic health factors on peak antibody following vaccination and to determine the influence of these predictors on antibody over time. Following cross-sectional analysis, we observed higher peak antibody titers after primary vaccination in females, those who reported recreational drug use, younger age, and prior COVID-19 history. Following booster vaccination, females and Hispanics had higher peak titers after the 3rd and 4th doses, respectively. Longitudinal models demonstrated that Moderna mRNA-1273 recipients, females, and those previously vaccinated had increased peak titers over time. Moreover, drug users and half-dose Moderna mRNA-1273 recipients had higher peak antibody titers over time following the first booster, while no predictive factors significantly affected post-second booster antibody responses. Overall, both intrinsic and extrinsic health factors play a significant role in shaping humoral immunogenicity after initial vaccination and the first booster. The absence of predictive factors for second booster immunogenicity suggests a more robust and consistent immune response after the second booster vaccine administration.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Humanos , Formação de Anticorpos , COVID-19/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Estudos Transversais , Anticorpos , Vacinação , Anticorpos Antivirais
4.
PLoS One ; 19(4): e0299302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573911

RESUMO

INTRODUCTION: Following the coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, vaccination became the main strategy against disease severity and even death. Healthcare workers were considered high-risk for infection and, thus, were prioritised for vaccination. METHODS: A follow-up to a SARS-CoV-2 seroprevalence study among clinical and non-clinical HCWs at the Aga Khan University Hospital, Nairobi, we assessed how vaccination influenced SARS-CoV-2 anti-spike IgG antibody responses and kinetics. Blood samples were drawn at two points spanning 6 to 18 months post-vaccination, and SARS-CoV-2 spike antibody levels were determined by enzyme-linked immunosorbent assay. RESULTS: Almost all participants, 98% (961/981), received a second vaccine dose, and only 8.5% (83/981) received a third dose. SARS-CoV-2 spike IgG antibodies were detected in 100% (961/961) and 92.7% (707/762) of participants who received two vaccine doses, with the first and second post-vaccine test, respectively, and in 100% (83/83) and 91.4% (64/70) of those who received three vaccine doses at the first and second post-vaccine test, respectively. Seventy-six participants developed mild infections, not requiring hospitalisation even after receiving primary vaccination. Receiving three vaccine doses influenced the anti-spike S/Co at both the first (p<0.001) and second post-vaccination testing (p<0.001). Of those who tested SARS-CoV-2 positive, the anti-spike S/Co ratio was significantly higher than those who were seronegative at the first post-vaccine test (p = 0.001). Side effects were reported by almost half of those who received the first dose, 47.3% (464/981), 28.9% (278/961) and 25.3% (21/83) of those who received the second and third vaccine doses, respectively. DISCUSSION AND CONCLUSION: Following the second dose of primary vaccination, all participants had detectable anti-spike antibodies. The observed mild breakthrough infections may have been due to emerging SARS-CoV-2 variants. Findings suggest that although protective antibodies are induced, vaccination protected against COVID-19 disease severity and not necessarily infection.


Assuntos
COVID-19 , Vacinas , Humanos , Quênia/epidemiologia , Formação de Anticorpos , SARS-CoV-2 , Estudos Soroepidemiológicos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação , Anticorpos Antivirais , Pessoal de Saúde , Imunoglobulina G
5.
Elife ; 132024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619110

RESUMO

A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a ß-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.


Assuntos
Vacinas contra a AIDS , Dermatite , HIV-1 , Animais , Camundongos , Humanos , HIV-1/genética , Formação de Anticorpos , Estudos Longitudinais , Vacinas contra a AIDS/genética , Anticorpos , Antígenos Virais
7.
PLoS Pathog ; 20(4): e1012159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662650

RESUMO

Human enteroviruses are the most common human pathogen with over 300 distinct genotypes. Previous work with poliovirus has suggested that it is possible to generate antibody responses in humans and animals that can recognize members of multiple enterovirus species. However, cross protective immunity across multiple enteroviruses is not observed epidemiologically in humans. Here we investigated whether immunization of mice or baboons with inactivated poliovirus or enterovirus virus-like-particles (VLPs) vaccines generates antibody responses that can recognize enterovirus D68 or A71. We found that mice only generated antibodies specific for the antigen they were immunized with, and repeated immunization failed to generate cross-reactive antibody responses as measured by both ELISA and neutralization assay. Immunization of baboons with IPV failed to generate neutralizing antibody responses against enterovirus D68 or A71. These results suggest that a multivalent approach to enterovirus vaccination is necessary to protect against enterovirus disease in vulnerable populations.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Infecções por Enterovirus , Vacina Antipólio de Vírus Inativado , Animais , Camundongos , Reações Cruzadas/imunologia , Anticorpos Antivirais/imunologia , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/virologia , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Anticorpos Neutralizantes/imunologia , Papio/imunologia , Humanos , Poliovirus/imunologia , Feminino , Formação de Anticorpos/imunologia , Enterovirus/imunologia , Camundongos Endogâmicos BALB C , Enterovirus Humano D/imunologia
8.
Parasite Immunol ; 46(4): e13027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587985

RESUMO

Malaria in pregnancy has severe consequences for the mother and foetus. Antibody response to specific malaria vaccine candidates (MVC) has been associated with a decreased risk of clinical malaria and its outcomes. We studied Plasmodium falciparum (Pf) and Schistosoma haematobium (Sh) infections and factors that could influence antibody responses to MVC in pregnant women. A total of 337 pregnant women receiving antenatal care (ANC) and 139 for delivery participated in this study. Pf infection was detected by qPCR and Sh infection using urine filtration method. Antibody levels against CSP, AMA-1, GLURP-R0, VAR2CSA and Pfs48/45 MVC were quantified by ELISA. Multivariable linear regression models identified factors associated with the modulation of antibody responses. The prevalence of Pf and Sh infections was 27% and 4% at ANC and 7% and 4% at delivery. Pf infection, residing in Adidome and multigravidae were positively associated with specific IgG response to CSP, AMA-1, GLURP-R0 and VAR2CSA. ITN use and IPTp were negatively associated with specific IgG response to GLURP-R0 and Pfs48/45. There was no association between Sh infection and antibody response to MVC at ANC or delivery. Pf infections in pregnant women were positively associated with antibody response to CSP, GLURP-R0 and AMA-1. Antibody response to GLURP-R0 and Pfs48/45 was low for IPTp and ITN users. This could indicate a lower exposure to Pf infection and low malaria prevalence observed at delivery.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Esquistossomose Urinária , Animais , Humanos , Feminino , Gravidez , Plasmodium falciparum , Schistosoma haematobium , Formação de Anticorpos , Gestantes , Antígenos de Protozoários , Anticorpos Antiprotozoários , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/complicações , Esquistossomose Urinária/epidemiologia , Esquistossomose Urinária/prevenção & controle , Esquistossomose Urinária/complicações , Imunoglobulina G
9.
Curr Protoc ; 4(4): e1024, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578049

RESUMO

The primary mode of transmission for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is infection of the respiratory tract through droplets and/or aerosols. Therefore, immune responses at respiratory mucosal surfaces play a significant role in the prevention of infection. Greater emphasis is now being placed on mucosal immunity induced by exposure to SARS-CoV-2 antigens through infection or vaccination. In concert with cellular immunity, humoral responses at mucosal surfaces, especially the secretory version of immunoglobulin A (sIgA), can be instrumental in preventing respiratory infections. A better understanding of mucosal immune responses can further our knowledge of immunity to SARS-CoV-2 and help inform vaccine design. Here we describe a detailed protocol for an in vitro assay based on the enzyme-linked immunosorbent assay (ELISA) to assess mucosal antibody response to SARS-CoV-2 spike protein in human saliva. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: ELISA measurement of mucosal antibodies to SARS-CoV-2 spike protein in human saliva.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Vacinas Virais , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Saliva , Formação de Anticorpos , Ensaio de Imunoadsorção Enzimática
10.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38444027

RESUMO

Typhoid is endemic in India and has high global incidence. There were large outbreaks of typhoid in India between 1990 and 2018. Available typhoid vaccines induce variable levels of protective antibodies among recipients; thus, there is variability in response to the vaccine. Interindividual genomic differences is hypothesized to be a determinant of the variability in response. We studied the antibody response of ~1000 recipients of the Vi-polysaccharide typhoid vaccine from Kolkata, India, who showed considerable variability of antibody response, i.e., anti-Vi-polysaccharide antibody level 28 days postvaccination relative to prevaccination. For each vaccinee, wholegenome genotyping was performed using the Infinium Global Screening Array (Illumina). We identified 39 SNPs that mapped to 13 chromosomal regions to be associated with antibody response to the vaccine; these included SNPs on genes LRRC28 (15q26.3), RGS7 (1q43), PTPRD (9p23), CERKL (2q31.3), DGKB (7p21.2), and TCF4 (18q21.2). Many of these loci are known to be associated with various blood cell traits, autoimmune traits and responses to other vaccines; these genes are involved in immune related functions, including TLR response, JAK-STAT signalling, phagocytosis and immune homeostasis.


Assuntos
Proteínas RGS , Febre Tifoide , Vacinas Tíficas-Paratíficas , Humanos , Vacinas Tíficas-Paratíficas/genética , Formação de Anticorpos , Febre Tifoide/epidemiologia , Febre Tifoide/prevenção & controle , Genômica , Polissacarídeos
11.
Can Vet J ; 65(3): 250-258, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38434170

RESUMO

Objective: This study addressed the current gap in knowledge of neonatal prime-boost immune responses for the control of bovine coronavirus (BCoV) respiratory disease in weaning-age beef cattle. Animals: Study 1 and Study 2 had 33 and 22 commercial cross neonatal beef calves, respectively. Procedures: Study 1 compared BCoV-neutralizing antibody concentrations of control calves with 3 groups of calves differentially vaccinated with mucosal and/or systemic BCoV modified live virus (MLV) vaccines. Study 2 compared specific and neutralizing antibody concentrations among mucosally BCoV primed groups of calves that were differentially systemically boosted. Results: In Study 1, calves that were mucosally primed and systemically boosted had higher BCoV-neutralizing antibody concentrations than the control group at weaning. In Study 2, boosting mucosally primed calves by injecting inactivated or MLV vaccine resulted in anamnestic BCoV-specific antibody responses at weaning. Conclusion: Neonatal mucosal priming and systemic boosting resulted in anamnestic BCoV antibody responses at weaning. Clinical relevance: Prime-boost vaccination should be considered for control of BCoV respiratory disease.


Comparaison des réponses en anticorps ELISA neutralisant le virus et spécifiques du virus chez des nouveau-nés bovins vaccinés par amorces-rappels différenciés contre le coronavirus bovin. Objectif: Cette étude a abordé le manque actuel de connaissances sur les réponses immunitaires néonatales de stimulation pour maitriser la maladie respiratoire à coronavirus bovin (BCoV) chez les bovins de boucherie en âge de sevrage. Animaux: Les études 1 et 2 portaient respectivement sur 33 et 22 veaux de boucherie néonatals croisés commerciaux. Procédures: L'étude 1 a comparé les concentrations d'anticorps neutralisant le BCoV de veaux témoins avec 3 groupes de veaux vaccinés de manière différentielle avec des vaccins à virus vivant modifié (MLV) contre le BCoV pour administration par voie mucosale et/ou systémique. L'étude 2 a comparé les concentrations d'anticorps spécifiques et neutralisants parmi des groupes de veaux sensibilisés au BCoV par voie mucosale et qui ont eu un rappel par voie systémique différentielle. Résultats: Dans l'étude 1, les veaux qui avaient reçu une amorce au niveau des muqueuses et un rappel systémique présentaient des concentrations d'anticorps neutralisant le BCoV plus élevées que le groupe témoin au sevrage. Dans l'étude 2, le rappel des veaux amorcés par voie mucosale par l'injection d'un vaccin inactivé ou MLV a entraîné une réponse anamnestique en anticorps spécifiques du BCoV au sevrage. Conclusion: En période néonatale, l'amorce par voie mucosale et le renforcement systémique ont entraîné des réponses anamnestiques en anticorps BCoV au sevrage. Pertinence clinique: La vaccination de rappel doit être envisagée pour maitriser la maladie respiratoire causée par le BCoV.(Traduit par Dr Serge Messier).


Assuntos
Coronavirus Bovino , Bovinos , Animais , Formação de Anticorpos , Ensaio de Imunoadsorção Enzimática/veterinária , Anticorpos Neutralizantes , Vacinação/veterinária , Vacinas Atenuadas
13.
Pharm Res ; 41(4): 651-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519817

RESUMO

BACKGROUND AND PURPOSE: There is concern that subvisible aggregates in biotherapeutic drug products pose a risk to patient safety. We investigated the threshold of biotherapeutic aggregates needed to induce immunogenic responses. METHODS AND RESULTS: Highly aggregated samples were tested in cell-based assays and induced cellular responses in a manner that depended on the number of particles. The threshold of immune activation varied by disease state (cancer, rheumatoid arthritis, allergy), concomitant therapies, and particle number. Compared to healthy donors, disease state patients showed an equal or lower response at the late phase (7 days), suggesting they may not have a higher risk of responding to aggregates. Xeno-het mice were used to assess the threshold of immune activation in vivo. Although highly aggregated samples (~ 1,600,000 particles/mL) induced a weak and transient immunogenic response in mice, a 100-fold dilution of this sample (~ 16,000 particles/mL) did not induce immunogenicity. To confirm this result, subvisible particles (up to ~ 18,000 particles/mL, containing aggregates and silicone oil droplets) produced under representative administration practices (created upon infusion of a drug product through an IV catheter) did not induce a response in cell-based assays or appear to increase the rate of adverse events or immunogenicity during phase 3 clinical trials. CONCLUSION: The ability of biotherapeutic aggregates to elicit an immune response in vitro, in vivo, and in the clinic depends on high numbers of particles. This suggests that there is a high threshold for aggregates to induce an immunogenic response which is well beyond that seen in standard biotherapeutic drug products.


Assuntos
Formação de Anticorpos , Humanos , Camundongos , Animais , Preparações Farmacêuticas
14.
Front Immunol ; 15: 1338937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449861

RESUMO

Introduction: The mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), produced by Fusarium fungi, are frequently found in the cereal-rich diet of pigs and can modulate the immune system. Some enzymes or bacteria present in the digestive tract can de-epoxydize DON to deepoxy-deoxynivalenol (DOM-1) and biotransform ZEN into hydrolyzed ZEN (HZEN). The effects of these metabolites on immune cells, particularly with respect to the vaccine responses, are poorly documented. The aim of this study was to address the impact of DON and ZEN and their respective derivatives, on proliferation, and antibody production of porcine B cells in vitro. Methods: Peripheral blood mononuclear cells (PBMCs), isolated from healthy pigs, were stimulated with the Toll-like receptor (TLR) 7/8-agonist Resiquimod (R848) or the TLR/1/2-agonist Pam3Cys-SKKKK in combination with DON [0.1-1.6 µM] or DOM-1 [1.6 µM and 16 µM] and ZEN [2.5-40 µM] or HZEN [40 µM]. Results: A strong decrease in B-cell proliferation was observed at DON concentrations equal to or exceeding 0.8 µM and at ZEN concentrations equal to or exceeding 20 µM. Treatment with 1.6 µM DON or 40 µM ZEN led to almost a complete loss of live CD79α+ B cells. Moreover, CD21 expression of proliferating IgG+ and IgM+ B-cell subsets was decreased at DON concentrations equal to and exceeding 0.4 µM and at ZEN concentrations equal to or exceeding 10 µM. ELISpot assays revealed a decrease of IgG-secreting B cells at concentrations of and exceeding 0.4 µM and at ZEN concentrations equal to and exceeding 10 µM. ELISA assays showed a decrease of IgM, IgG, and IgA secretion at concentrations equal to or exceeding 0.4 µM DON. ZEN reduced IgM secretion at 20-40 µM (both R848 and Pam3Cys-SKKKK), IgG secretion at 40 µM (both R848 and Pam3Cys-SKKKK) and IgA secretion at 20-40 µM. Discussion: Our in vitro experiments show that while DON and ZEN impair immunoglobulin production and B-cell proliferation, this effect is abrogated by HZEN and DOM-1.


Assuntos
Tricotecenos , Zearalenona , Animais , Suínos , Formação de Anticorpos , Leucócitos Mononucleares , Proliferação de Células , Adjuvantes Imunológicos , ELISPOT , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
15.
Front Immunol ; 15: 1325387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469296

RESUMO

Introduction: This study aimed to delineate longitudinal antibody responses to the Pfizer-BioNTech BNT162b2 COVID-19 vaccine within the Ugandan subset of the Sub-Saharan African (SSA) demographic, filling a significant gap in global datasets. Methods: We enrolled 48 participants and collected 320 specimens over 12 months after the primary vaccination dose. A validated enzyme-linked immunosorbent assay (ELISA) was used to quantify SARS-CoV-2-specific IgG, IgM, and IgA antibody concentrations (ng/ml) and optical densities (ODs). Statistical analyses included box plots, diverging bar graphs, and the Wilcoxon test with Bonferroni correction. Results: We noted a robust S-IgG response within 14 days of the primary vaccine dose, which was consistent with global data. There was no significant surge in S-IgG levels after the booster dose, contrasting trends in other global populations. The S-IgM response was transient and predominantly below established thresholds for this population, which reflects its typical early emergence and rapid decline. S-IgA levels rose after the initial dose then decreased after six months, aligning with the temporal patterns of mucosal immunity. Eleven breakthrough infections were noted, and all were asymptomatic, regardless of the participants' initial S-IgG serostatus, which suggests a protective effect from vaccination. Discussion: The Pfizer-BioNTech BNT162b2 COVID-19 vaccine elicited strong S-IgG responses in the SSA demographic. The antibody dynamics distinctly differed from global data highlighting the significance of region-specific research and the necessity for customised vaccination strategies.


Assuntos
Imunoglobulina G , Vacinas , Humanos , Vacina BNT162 , Formação de Anticorpos , Vacinas contra COVID-19 , Uganda , Vacinação , Anticorpos Antivirais , Políticas , Imunoglobulina M
16.
Front Immunol ; 15: 1330549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433831

RESUMO

Background: Vaccination against COVID-19 is highly effective in preventing severe disease and hospitalization, but primary COVID mRNA vaccination schedules often differed from those recommended by the manufacturers due to supply chain issues. We investigated the impact of delaying the second dose on antibody responses to COVID mRNA-vaccines in a prospective cohort of health-care workers in Quebec. Methods: We recruited participants from the McGill University Health Centre who provided serum or participant-collected dried blood samples (DBS) at 28-days, 3 months, and 6 months post-second dose and at 28-days after a third dose. IgG antibodies to SARS-CoV2 spike (S), the receptor-binding domain (RBD), nucleocapsid (N) and neutralizing antibodies to the ancestral strain were assessed by enzyme-linked immunosorbent assay (ELISA). We examined associations between long (≤89 days) versus short (<89 days) between-dose intervals and antibody response through multivariable mixed-effects models adjusted for age, sex, prior covid infection status, time since vaccine dose, and assay batch. Findings: The cohort included 328 participants who received up to three vaccine doses (>80% Pfizer-BioNTech). Weighted averages of the serum (n=744) and DBS (n=216) cohort results from the multivariable models showed that IgG anti-S was 31% higher (95% CI: 12% to 53%) and IgG anti-RBD was 37% higher (95% CI: 14% to 65%) in the long vs. short interval participants, across all time points. Interpretation: Our study indicates that extending the covid primary series between-dose interval beyond 89 days (approximately 3 months) provides stronger antibody responses than intervals less than 89 days. Our demonstration of a more robust antibody response with a longer between dose interval is reassuring as logistical and supply challenges are navigated in low-resource settings.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Estudos Prospectivos , Vacinas contra COVID-19 , RNA Viral , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Imunoglobulina G , RNA Mensageiro
17.
Nutrients ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542816

RESUMO

The meat derived from mammals such as cows, sheep, and pigs is commonly referred to as red meat. Recent studies have shown that consuming red meat can activate the immune system, produce antibodies, and subsequently develop into tumors and cancer. This is due to the presence of a potential carcinogenic compound in red meat called N-ethanol neuraminic acid (Neu5Gc). Neu5Gc is a common sialic monosaccharide in mammals, synthesized from N-acetylneuraminic acid (Neu5Ac) in the body and typically present in most mammals. However, due to the lack of the CMAH gene encoding the cytidine 5'-monophosphate Neu5Ac hydroxylase, humans are unable to synthesize Neu5Gc. Compared to primates such as mice or chimpanzees, the specific loss of Neu5Gc expression in humans is attributed to fixed genome mutations in CMAH. Although Neu5Gc cannot be produced, it can be introduced from specific dietary sources such as red meat and milk, so it is necessary to use mice or chimpanzees that knock out the CMAH gene instead of humans as experimental models. Further research has shown that early pregnancy factor (EPF) has the ability to regulate CD4+T cell-dependent immune responses. In this study, we established a simulated human animal model using C57/BL6 mice with CMAH gene knockout and analyzed the inhibitory effect of EPF on red meat Neu5Gc-induced CMAH-/- C57/BL6 mouse antibody production and chronic inflammation development. The results showed that the intervention of EPF reduced slow weight gain and shortened colon length in mice. In addition, EPF treatment significantly reduced the levels of anti Neu5Gc antibodies in the body, as well as the inflammatory factors IL-6 and IL-1ß, TNF-α and the activity of MPO. In addition, it also alleviated damage to liver and intestinal tissues and reduced the content of CD4 cells and the expression of B cell activation molecules CD80 and CD86 in mice. In summary, EPF effectively inhibited Neu5Gc-induced antibody production, reduced inflammation levels in mice, and alleviated Neu5Gc-induced inflammation. This will provide a new re-search concept and potential approach for developing immunosuppressants to address safety issues related to long-term consumption of red meat.


Assuntos
Chaperonina 10 , Neoplasias , Proteínas da Gravidez , Carne Vermelha , Fatores Supressores Imunológicos , Feminino , Animais , Humanos , Camundongos , Bovinos , Suínos , Ovinos , Pan troglodytes , Formação de Anticorpos , Primatas , Inflamação , Mamíferos
18.
Virulence ; 15(1): 2334085, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38528835

RESUMO

Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibodies (ASCA), a serological marker of Crohn's disease. ASCA has also been reported in other autoimmune diseases, including coeliac disease (CeD). A strong antibody response against Hwp1, a protein associated with invasive hyphal form of C. albicans which presents peptide sequence homologies with gliadin, has also been described in CeD. This observation supports the hypothesis that C. albicans hyphal transition in C. albicans may trigger CeD onset through a mechanism of molecular/antigenic mimicry. In this study, we assessed whether the anti-C. albicans oligomannose and anti-Hwp1 protein responses may be linked despite their different pathophysiological significance. The measurement of ASCA levels in a cohort of patients involved in our previous Hwp1 study showed a significant correlation between the two biomarkers. This new observation further reinforces the link between C. albicans and CeD.


Assuntos
Doença Celíaca , Doença de Crohn , Humanos , Candida albicans/fisiologia , Doença Celíaca/microbiologia , Anticorpos Antifúngicos , Formação de Anticorpos
19.
Cell Rep Med ; 5(3): 101467, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38471503

RESUMO

Nipah virus (NiV) has been recently ranked by the World Health Organization as being among the top eight emerging pathogens likely to cause major epidemics, whereas no therapeutics or vaccines have yet been approved. We report a method to deliver immunogenic epitopes from NiV through the targeting of the CD40 receptor of antigen-presenting cells by fusing a selected humanized anti-CD40 monoclonal antibody to the Nipah glycoprotein with conserved NiV fusion and nucleocapsid peptides. In the African green monkey model, CD40.NiV induces specific immunoglobulin A (IgA) and IgG as well as cross-neutralizing responses against circulating NiV strains and Hendra virus and T cell responses. Challenge experiments using a NiV-B strain demonstrate the high protective efficacy of the vaccine, with all vaccinated animals surviving and showing no significant clinical signs or virus replication, suggesting that the CD40.NiV vaccine conferred sterilizing immunity. Overall, results obtained with the CD40.NiV vaccine are highly promising in terms of the breadth and efficacy against NiV.


Assuntos
Vacinas Virais , Animais , Chlorocebus aethiops , Linfócitos T , Formação de Anticorpos , Células Apresentadoras de Antígenos , Replicação Viral
20.
Cell Rep Med ; 5(3): 101474, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508136

RESUMO

Subvariants of the Omicron lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) efficiently escape neutralizing antibody responses induced by both vaccination and infection with antigenically distinct variants. Here, we describe the potency and breadth of neutralizing and binding antibody responses against a large panel of variants following an Omicron BA.1 or BA.2 breakthrough infection in a heterogeneous cohort of individuals with diverse exposure histories. Both BA.1 and BA.2 breakthrough infections significantly boost antibody levels and broaden antibody reactivity. However, this broader immunity induced by BA.1 and BA.2 breakthrough infections does not neutralize Omicron BQ and XBB subvariants efficiently. While these subvariants are not neutralized well by post-breakthrough sera, suggesting escape, binding non-neutralizing antibody responses are sustained. In summary, our data suggest that while BA.1 and BA.2 breakthrough infections broaden the immune response to SARS-CoV-2 spike, the induced neutralizing antibody response is still outpaced by viral evolution.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Infecções Irruptivas , SARS-CoV-2 , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...